

© Copyright 2021, LS Retail ehf. All rights reserved. All trademarks belong to their respective holders

Extending Analytics for LS Central

Analytics 2026.1 and later versions

Using bc2adls extension

LS Retail ehf.

Hagasmari 3, 201 Kopavogur, Iceland

Phone +354 414 5700

Contents

1 Introduction .. 4

2 Initial setup ... 5

3 Add Company .. 6

4 The bc2adls extension ... 7

5 Staging ... 8

Staging with bc2adls ... 8

Why schema export is required ... 8

Prestaging vs staging tables ... 8

Adding new tables or columns ... 8

Running Initial Load vs Factory Reset ... 9

Important note about metadata regeneration ... 9

Adding new staging table to Source Tables Map Error! Bookmark not defined.

6 Dimensions ... 12

Add new column to existing dimension ... 12

Add column to dimension 12

Add new dimension .. 15

7 Facts .. 17

Add new column from staging table to existing fact table ... 17

Add column to fact table 17

Modify stored procedure 17

Add new fact table .. 19

Add new pipelines to ADF ... 20

Modules in scheduled run 20

Structure of modules 21

8 Third-party data ... 23

Open the Azure Data Factory studio ... 23

Staging data ... 23

Create a copy pipeline 23

Add Pipeline variables 24

LS Retail ehf.

Hagasmari 3, 201 Kopavogur, Iceland

Phone +354 414 5700

Copy Activity 25

Create a new source connection 25

Connect to your data 27

Set the pre-copy script 27

Add Write to audit table action 28

Update AnalyticsAudit on success 29

Update AnalyticsAudit on failure 30

Large data source 30

Add staging pipeline to scheduled run 31

Add fact table to star schema ... 33

Create a connected fact table 33

Create a Stored Procedure 33

Add a fact table Stored Procedure to ADF pipeline 35

Add data directly in Power BI .. 39

Get a new source 39

Merge to get surrogate keys 39

Expand merged tables 40

Remove unnecessary columns 41

M query 41

Define relationships in PowerBI 42

Use the new data in a report page .. 43

Extending Analytics for LS Central

Chapter 1 - Introduction 4

1 Introduction

This document describes how to extend the Analytics data warehouse and reports.

Analytics has always been thought of as a product that provides a BI base for our customers that

currently have no BI solution in place.

With Analytics, we provide a basic extendable data warehouse with SQL server database and Power

BI reports and measures that work with the warehouse's data structure.

We have therefore always encouraged extending Analytics in any way that suits the customer and

have now decided to provide more detailed guidelines and examples of how to extend Analytics with

data from LS Central base or extensions and third-party data.

In Analytics version 2026.1 we added support for using the data from the bc2adls extension which

gives us huge performance benefits over the old replication methods. It should also provide better

handling of staging data, scale much better with number of companies added to Analytics and provide

a simpler setup of exporting data from SaaS deployments.

Extending Analytics for LS Central

Chapter 2 - Initial setup 5

2 Initial setup

The initial setup of Analytics is described in detail in the onboarding documentation in the Analytics

section the LS Central online help and will not be explained here.

There are also several LS Retail Academy courses on how to setup Analytics for different LS Central

and Analytics platforms.

https://help.lscentral.lsretail.com/Content/LS-Insight/Setup/Onboarding.htm?tocpath=Retail%7CLS%20Insight%7COnboarding%20Process%7C_____0

Extending Analytics for LS Central

Chapter 3 - Add Company 6

3 Add Company

In the initial setup you select which companies you want to load to Analytics.

If you want to add a new company to your Analytics setup at a later stage, that is easy to do.

You can add to the Analytics$Companies table using the Add or Delete Companies pipeline in the

Analytics ADF.

When you add the trigger for the pipeline you are prompted with several fields:

• Companies (Company name as it is on the Companies page in LS Central).

o You can add/delete several companies simultaneously by separating them with a

comma.

• Delete Companies (default setting is false, but if set to true the entered companies will be

deleted).

Once you have added/deleted the companies you want to include/remove from , you run the

Scheduled Run. Data from the companies you added will be added to the staging, dimension, and fact

tables when the Scheduled Run pipeline runs. You could also run the Factory reset pipeline if you

prefer.

In the bc2adls version it is very important that all companies that are being exported by the bc2adls

extension are registered in Analytics, otherwise you will receive errors when trying to insert NULL

values into the Company column.

Extending Analytics for LS Central

Chapter 4 - The bc2adls extension 7

4 The bc2adls extension

We use the bc2adls extension to export data from LS Central into a storage account in Azure. The

reason we use this extension is because it’s simple to setup, performs very well and makes it very

easy to export only the changes between each run which should make our staging process a lot more

efficient.

The extension is maintained and supported by Bert Verbeek and you can find further information on

his github page: https://github.com/Bertverbeek4PS/bc2adls

This guide will not go into details regarding how the extension works, but there are a few things that

you should be aware of.

o All files exported by the bc2adls extension are stored in the Azure Storage Account defined

during deployment.

o The cdm.json schema files are created when you run the schema export in the

extension. The cdm.json are stored in the root folder of the storage account.

o The delta export files are stored in the deltas folder each table has its own subfolder.

If you are exporting data for multiple companies, there will be one file per company

but they will share the table folder.

o After the data from the delta table has been copied into the prestaging tables in Analytics, the

delta file is deleted.

https://github.com/Bertverbeek4PS/bc2adls

Extending Analytics for LS Central

Chapter 5 - Staging 8

5 Staging

Staging tables in Analytics are each based on cdm.json file produced by the bc2adls extension in LS

Central. The cdm.json file includes selected columns from the base table plus columns from the $ext

companion table. The base table can have its origin in Business Central or be created by an app like

LS Central.

Staging with bc2adls explained

Staging table metadata and table creation process

The prestaging and staging tables used by Analytics are created automatically during the Initial Load

and Factory Reset pipelines. The SQL statements required to create and maintain these tables are

stored in the metadata table: dbo.AnalyticsBC2ADLSMetadata

This table contains, per source table:

o Prestaging table name

o Staging table name

o SQL to create both tables

o SQL to create indexes

o SQL to merge prestaging into staging

o SQL to drop tables (used during resets)

The metadata table is populated by the PopulateQueryBase pipeline in Azure Data Factory. This

pipeline reads the cdm.json schema files produced by the bc2adls extension during schema export,

and generates the correct SQL scripts for each table and column.

Prestaging vs staging tables

Prestaging tables are used only as a temporary landing zone for incoming delta files exported from

bc2adls. Delta data is first loaded into the prestaging table. The prestaging data is then merged into

the staging table using the merge SQL stored in the metadata. After a successful merge, the prestaging

table is truncated. This allows the system to load deltas efficiently while keeping the staging table as

the stable “latest version” dataset.

Staging tables contain the full combined dataset (base + extensions) after the merge process has

completed. These staging tables are then used as the input for dimension and fact table processing.

Why schema export is required when making changes to configuration

The schema export is required because bc2adls uses it to generate the cdm.json files, which define:

o available tables

o available fields/columns

o column names and datatypes

o structure required for the staging SQL generation

Without an updated schema export, the Analytics pipelines cannot correctly generate the

staging/prestaging table structures, meaning new tables or columns will not be created in SQL.

Extending Analytics for LS Central

Chapter 5 - Staging 9

Running Initial Load vs Factory Reset

Initial Load is run when the system is being loaded for the first time. The pipeline will:

o regenerate the metadata in AnalyticsBC2ADLSMetadata

o create prestaging and staging tables

o load exported data into prestaging

o merge into staging

o populate dimension and fact tables

Use Factory Reset if the solution has already been running, but you need to fully rebuild the

environment. The Factory Reset pipeline will:

o regenerate the metadata in AnalyticsBC2ADLSMetadata

o drop and recreate staging and prestaging tables

o delete/truncate data from dimension and fact tables

o reload and rebuild all data from scratch

During Factory Reset, reports should still work because Power BI uses Import mode, but partners

should avoid refreshing Power BI datasets until the pipeline has finished.

Important note about metadata regeneration

Both Initial Load and Factory Reset will truncate and rebuild the AnalyticsBC2ADLSMetadata table.

This ensures that the metadata always matches the most recent schema export and prevents

inconsistencies when new columns or tables have been added.

Adding new tables or columns to staging

1. Change configuration and export from LS Central

If you want to add new tables or new columns into staging, the process is always:

1. Add the required table(s) and field(s) in the bc2adls extension configuration in Business

Central.

2. Run a schema export to regenerate the cdm.json files.

a. This is required because Analytics generates SQL staging metadata based on the

schema export.

3. Reset bc2adls tables and rerun export.

a. We recommend running a reset of all tables in bc2adls and then running the export

again. This reset is required because without it, bc2adls will only export deltas, and

newly added columns/tables may not appear in the storage export until a full refresh

is triggered. Reset forces the extension to read all data from Business Central and re-

export the full dataset.

Extending Analytics for LS Central

Chapter 5 - Staging 10

2. Adding new staging table to Source Tables Map

1. Once you have added a new table to the bc2adls export, you need to add it to the

Analytics$SourceTablesMap table. If you don’t add the table new tables to this table (or set the

IncludeTable field to FALSE), then the staging process will not pickup the exported data from

bc2adls.

2. You need to add the table name you want to use for the staging table in SoureTableName

column and the actual name of the table in LS Central, without any GUID or Company name, in

PrefixedSourceTableName column and set the Include field to TRUE. If the actual name of the

table in LS Central is the same as the name you want use for the staging table then the value in

PrefixedSourceTableName column can be NULL. You also need to assign the source table to a

module. You can assign it to one of the Analytics modules if that‘s where the table fits logically, or

create a custom module which you can reference at later stages in the ADF pipeline.

3. If the Include Table field is set to false, the table will not be included in Analytics staging.

4. You can add to the Analytics$SourceTablesMap table using the Add or Delete Source Tables

pipeline in the Analytics ADF.

5. In the example below we will show how you would add a staging table to Analytics for the table

6. CRONUS - LS Central$LSC Activity Label Script Line$5ecfc871-5d82-43f1-9c54-59685e82318d

7. When you trigger the pipeline you are prompted to add a value to the SourceTableName and

PrefixedSourceTableName fields, you can only add or delete one table at a time. If you add the

value TRUE to the DeleteRow field, the source table name you specify will be deleted from the

table if it exists. If you are adding a source table that is a BC standard table or you want the name

of the new staging table to include the prefix, you can leave the PrefixedSourceTableName value

empty.

Extending Analytics for LS Central

Chapter 5 - Staging 11

When the pipeline has run and entry for the table has been added to Analytics$SourceTablesMap

table (see image below).

You can then move on and run the Initial load or Factory reset pipeline.

3. Run Initial load or Factory reset

Like explained above you should only run the Initial load pipeline if you made modifation before

running it for the first time otherwise use the Factory reset.

The pipelines (Initial load and Factory reset) will both fetch the latest metadata from the cdm.json file

and generate the data for the AnalyticsBC2ADLSMetadata table. If you run the Factory reset

pipeline, then it will drop and recreate all staging and prestaging tables. Finally both pipelines will

trigger the Scheduled Run pipeline that populates the new or updated staging table.

Once the pipeline has run the staging table should be populated with the new columns and fields. This

does, however, not have any impact on the dimension or fact tables since those are populated using

stored procedures that need to be created in the database according to the star schema design rules.

In the next sections we will explain in more detail how you can add a column to a dimension, add a

new dimension and connect it to a fact table. And then how you can update the reports to include the

new information.

Extending Analytics for LS Central

Chapter 6 - Dimensions 12

6 Dimensions

The dimension tables are populated and updated by a stored procedure. The dimension stored

procedures often combine more than one staging table into a single dimension.

All dimensions included in the DW have been created by the Analytics team and are included in the

Analytics database.

Please note that when changing a dimension table in an Analytics environment that is already up and

running, you need to be careful when making changes. The instructions below assume that you have

not populated the data warehouse and can therefore drop and recreate tables as needed.

If you have already populated the data warehouse, you will either need to make the changes without

dropping the dimension table or run the Factory reset pipeline after you have made all the changes.

This is because dropping the table will create new SK values which link the dimension to the fact table,

causing the data to be incorrect.

Add new column to existing dimension

If you want to add new columns from new or existing staging tables that is a very straight forward

process.

Let's imagine that you want to add information about whether an item is a scale item or not so you

can see whether that is impacting sales in any way and so you can compare sales between stores for

scale items only, since you have a feeling that some stores sell more scale items than others, but you

want to confirm that suspicion.

The stg$Item table has a field called “Scale Item” that you can use to distinguish between scale items

and non-scale items.

Add column to dimension

The first thing you do is add a new column to the dItem dimension table.

The best way to edit a table in an existing Analytics database is to connect to the database using SQL

Server Management Studio (SSMS).

We recommend connecting to the Azure database from SSMS (the connection information for the

Analytics database was provided in the deployment summary) and then following these steps:

1) In the Analytics database expand Tables.

2) Select the dItem table

3) Right-click and select Script Table as > DROP and CREATE To > New query editor window.

a. Like mentioned above you can also do ALTER TABLE here if you only want to update

the values in the dimension, for example when adding a new column, and not create

new SK values that would require you to recreate the fact tables.

4) The script will open in a new window.

5) In the CREATE TABLE part of the script, add the new column. Here you can use the same

datatype as in the staging table if you are using the value as is, or you can change it if you want

to transform the value in any way.

Extending Analytics for LS Central

Chapter 6 - Dimensions 13

6) Then add an ALTER TABLE section to set the default value of the new column. In this example

we have set the default value to zero. But the default selected depends on the datatype.

7) Now run the script

8) The message “Commands completed successfully” is displayed, and the table will be dropped

and recreated including the new column. The table will be empty and to populate it again you

need to edit the dimMergedItem stored procedure.

To modify the stored procedure that loads data into the dItem table, do the following in SSMS:

1) In the Analytics database expand Programmability.

2) Select the dbo.dimMergedItem (or vX.XdimMergedItem) stored procedure for the LS Central

version you are using.

3) Right-click and select Modify.

4) A modification script for the procedure is opened.

5) Since you are already selecting from the stg$Item table in the procedure, you just need to add

the column where needed, and since this is tiny int value there is no need to check for NULL

values. So, what you do is select from the Scale item column into the temp table and add it to

the GROUP BY aggregation as well.

Extending Analytics for LS Central

Chapter 6 - Dimensions 14

If the column you wanted to add to the dimension was from a new staging table, you would

need to create a temp table for that staging table as you did for ItemCategory and

ProductGroup and do the join here. As you can see from the other join statements, we do a

LEFT JOIN on the ID and the CompanyPrefix.

6) Then select the column from tItem in the MERGE section.

Extending Analytics for LS Central

Chapter 6 - Dimensions 15

7) Add the column to the UPDATE statement.

8) And lastly, add the column to the INSERT statement.

WHEN NOT MATCHED BY TARGET

THEN INSERT ([Company], [No], [Description], [Category], [ProductGroup],

[InventoryPostingGroup], [BaseUnitOfMeasure], [Item Capacity Value],

[UnitPrice], [LastItemCost], [VendorNo], [VendorItemNo], [Division], [Scale

Item], [RowID], [BatchDate])

VALUES (Source.[Company], source.[No], Source.[Description],

Source.[Category], Source.[ProductGroup], Source.[Inventory Posting Group],

Source.[Base Unit of Measure], Source.[Item Capacity Value], Source.[Unit

Price], Source.[LastItemCost], Source.[Vendor No_], Source.[Vendor Item

No_], Source.[DivisionName], Source.[Scale Item], Source.[RowID],

Source.[BatchDate])

9) Now run the ALTER procedure script.

10) A “Commands completed successfully” message is displayed.

Now that the procedure has been modified, you can either execute it from SSMS or you can trigger the

Scheduled Run pipeline from Azure Data Factory.

When the procedure has been executed, the data in the new column has been populated with the

correct data from the staging table.

Add new dimension

If you would like to add a new dimension to the Analytics data warehouse from LS Central, the process

is straight forward.

Here are the steps you need to follow:

1. The first thing you do is add the table name to the Analytics$SourceTablesMap table. Using

the Add or Delete Source Tables pipeline in the Azure data factory. Remember to assign the

new table to a module.

Extending Analytics for LS Central

Chapter 6 - Dimensions 16

2. If you are running LS Central SaaS you then need to follow the process of adding one or more

prestaging tables in the chapters above.

3. Re-run the Populate Query Base pipeline in the Azure data factory.

4. Run the Scheduled Run pipeline to retrieve the data from the new tables.

5. Create a new dimension table with the columns you want to include.

6. Create a new stored procedure to populate the dimension table with data from one or more

staging tables. For the stored procedure to be run automatically you must keep to the naming

convention and prefix SP name with ‘dim’ and the correct module name.

7. Add connections from this new dimension table to the appropriate fact tables.

There are several dimension tables in the DW schema that you can use as examples for this, and you

can view the stored procedure used to populate them from the staging tables under Programmability.

All the dimension stored procedures are prefixed with ‘dim’ and then the module they belong to

(except base). So if you want to add a dimension to the Hospitality module, your procedure must be

named dimHospitalityMerged%YOUR_DIM_NAME% so that the data factory will execute the

procedure with the correct module. If you have no module name (dimMerged%YOUR_DIM_NAME%),

then the dimension procedure will be executed as part of the Base module.

Extending Analytics for LS Central

Chapter 7 - Facts 17

7 Facts

Add new column from staging table to existing fact table

To add a new column from staging table to fact table you would go through a similar process as was

used for new column to a dimension table. But since the stored procedures that update fact and

dimension tables are different, we will go through an example.

In the following example we will show how to add the points column from the stg$xxx table to the

fDiscount table and how to modify the stored procedure that loads the fDiscount table, so it includes

inserts and updates to the newly added column.

Add column to fact table

The first thing you do is add a new column to the fDiscount fact table.

The best way to edit a table in an existing database is to connect to the database using SQL Server

Management Studio (SSMS).

We recommend connecting to the Azure database from SSMS (the connection information for the

Analytics database was provided in the deployment summary) and then following these steps:

1) In the Analytics database, open a new query.

2) Enter the following ALTER script for the fDiscount table:

3) If you want, you can add a default value constraint of the new column. In this example we have

not set a default value.

4) Now run the script.

5) A Commands completed successfully message is displayed, the table will be altered, and the

new column added but containing only NULL values. To populate the new column with values,

you need to modify the stored procedure that loads the fDiscount table.

Modify stored procedure

To modify the stored procedure that loads data into the dItem table, do the following in SSMS:

1) In the Analytics database, expand Programmability.

2) Select the dbo.factDiscount.

3) Right-click and select Modify.

4) A modification script for the procedure opens.

Since you are already selecting from the stg$ table in the procedure, you just need to add the

column reference where needed, and since this is decimal value there is no need to check for

NULL values. So, what you do in the tDiscount temp table creation selection, is select from the

[Points] column in the stg$Trans_ Discount Entry staging table.

Extending Analytics for LS Central

Chapter 7 - Facts 18

If the column you wanted to add to the fact table was from a new staging table, you would

need to add this new staging table to the left outer join below.

5) Select the column from tDiscoutns in the MERGE section:

6) Add the column to the UPDATE statement:

Extending Analytics for LS Central

Chapter 7 - Facts 19

7) And lastly, add the column to the INSERT statement.

WHEN NOT MATCHED BY TARGET

 THEN INSERT ([Company]

 , [Date]

 , [Time]

 , [SK_Location]

 , [SK_Offer]

 , [SK_POSTerminal]

 , [Offer Type]

 , [Receipt No_]

 , [Line No_]

 , [TransactionNo]

 , [Discount Amount]

 , [Points]

 , [RowID]

 , [Batchdate]

 , [SK_Item]

 , [SK_Member]

 , [SK_Staff]

 , [SalesAmount]

 , [CostAmount])

VALUES (Source.[Company], Source.[Date], Source.[Time],

Source.[SK_Location], Source.[SK_Offer],

Source.[SK_POSTerminal], Source.[Offer Type], Source.[Receipt

No_], Source.[Line No_], Source.[TransactionNo],

Source.[Discount Amount],Source.[Points], Source.[RowID],

GETUTCDATE(), Source.[SK_Item], Source.[SK_Member],

Source.[SK_Staff], Source.[SalesAmount], Source.[CostAmount]);

1) Run the ALTER procedure script.

2) A Comands completed successfully message is displayed.

Now that the procedure has been modified, you need to execute it from SSMS with these parameter

values:

@CurrentRowID = 0

@NewRowID = 999999999999999

This will ensure that all the rows of the factDiscount table will be updated with the points value from

the staging table.

Add new fact table

The steps needed to add a new fact table to the Analytics data warehouse are described in chapter

7.4 Adding fact table to star schema in the section about third-party data. The process of creating

a new fact table from LS Central data is exactly the same, but in that case the staging tables hold data

from LS Central instead of third-party data. To utilize the Analytics dynamic staging process for these

new fact tables you need to add the source tables to Analytics$SourceTableMap.

Extending Analytics for LS Central

Chapter 7 - Facts 20

Add new pipelines to ADF

With the modular setup, we recommend that you follow the same structure as Analytics. Each module

is comprised of a few objects.

• Source tables (defined in the Analytics$SourceTablesMap table)

• Dimension tables and procedures.

o Not all modules have their own dimensions (for example, Inventory)

o All dimension procedures should follow the naming convention of

dim’ModuleName’Merged’ProcName’. dimHospitalityMergedDiningTable is for

example the name of the procedure that loads the DiningTable dimension in the

Hospitality module.

• Fact tables and procedures

• Seperate pipeline in ADF

o Each module pipeline starts by checking if module is enabled and then proceeds to

run pipelines if true.

o Each module pipeline executes dimension procedures first and then the fact table

procedures once dimensions are all completed.

We recommend that you create all pipelines in bicep or arm templates so that you can easily apply

your customizations to new environments when updating or setting up new installations.

Modules in scheduled run

The module pipelines are then all part of the Scheduled run pipeline.

On the image below you can see how the Scheduled run pipeline contains execute pipeline activities

for all modules.

Extending Analytics for LS Central

Chapter 7 - Facts 21

Structure of modules

For each module we have defined a wrapper pipeline which contains all pipelines for that particular

module. Each module wrapper pipeline contains a check to see if the module is active, and if it is, the

pipelines are triggered.

The module wrapper pipeline can contain multiple dimension- and fact-pipelines as seen here.

Here you can see what a custom module might look like in the data factory. You can download the

bicep files with the custom module (which is just for demonstration purposes) to get a better

understanding of how to create and maintain your custom modules.

Extending Analytics for LS Central

Chapter 7 - Facts 22

Here you can download the bicep files with the added custom module shown in the example above.

https://analyticsdelivery.blob.core.windows.net/analyticsdownloadsite/arm_template_module_de

mo.zip

https://analyticsdelivery.blob.core.windows.net/analyticsdownloadsite/arm_template_module_demo.zip
https://analyticsdelivery.blob.core.windows.net/analyticsdownloadsite/arm_template_module_demo.zip

Extending Analytics for LS Central

Chapter 8 - Third-party data 23

8 Third-party data

Here are the recommended steps you need to take to add third-party data to Analytics. In this example

you will be adding customer counter data from file. We will first describe how to add the data to the

Analytics data warehouse, and then how the data could be added directly to the Power BI report, if

you want to bypass the data warehouse.

Open the Azure Data Factory studio

Log into your Azure environment (https://portal.azure.com/), and open the Analytics Azure Data

Factory. You will find all resources in “All resources”.

Staging data

The first step is to get the source data in a staging table in the data warehouse (DW). In some scenarios

this is not needed, but it is good practice to stage the source data before cleaning and writing to the

star schema tables. There are many methods available to ingest the data and create the staging table

– in this example we are using Azure data factory (ADF).

Create a copy pipeline

Open the editor option, and click the three dots next to “2 – Staging Tables”:

Select to create a new pipeline in the selected folder by clicking New pipeline. And give it a

descriptive name. It is a good idea to add an affix to the name to distinguish it from Analytics pipelines.

https://portal.azure.com/

Extending Analytics for LS Central

Chapter 8 - Third-party data 24

Add Pipeline variables

Add a pipeline variable name “PipelineStart” to hold value of utcnow() to be able to log the pipeline

start in the AnalyticsAudit table in the Analytics database.

Set the current timestamp using the “Set variable” activity using “Add dynamic content”

Extending Analytics for LS Central

Chapter 8 - Third-party data 25

Copy Activity

Add a copy activity to copy the data from the source and write to a staging table in your DW.

Create a new source connection

The source connection needs to be set. If this connection does not exist in your ADF, a new connection

is created in the copy activity.

For this example, you will be using a flat file connection – you can choose from over 200 connectors,

depending on your data.

Extending Analytics for LS Central

Chapter 8 - Third-party data 26

Create a connection to the host.

Extending Analytics for LS Central

Chapter 8 - Third-party data 27

Connect to your data

Using the connection, select the data source. In this example the source is a text file in your local file

system.

Set the pre-copy script

In this example the full dataset is written to the staging table. The pre-copy script truncates the

staging table before writing the data from the source again on a schedule.

If there is not a separate method to ensure the staging table exists, there is an option to auto create

the table based on the source data.

Import the schemas and verify the mapping.

Extending Analytics for LS Central

Chapter 8 - Third-party data 28

Add Write to audit table action

Add a failure activity to the copy action to be able to trigger an activity when the copy activity has a

failure.

Add two “Stored procedure” activities that will both execute [dbo].[UpdateAnalyticsAudit] and

connect Success to UpdateAnalyticsAudit and failure to OnCopyError

Extending Analytics for LS Central

Chapter 8 - Third-party data 29

Update AnalyticsAudit on success

Set the SP variables as follows for the success activity – UpdateAnalyticsAudit:

Extending Analytics for LS Central

Chapter 8 - Third-party data 30

ADFRunGUID = @pipeline().RunId

CopyDuration = @activity('Get CustomerCounterData').output.copyDuration

PipelineName = @pipeline().Pipeline

PipelineStart = @variables('PipelineStart')

RowsCopied = @activity('Get CustomerCounterData').output.rowsCopied

RowsRead = @activity('Get CustomerCounterData').output.rowsRead

RowVersion is only used when you need to set up Incremental loading

Table = stg$ExtCustomerCounter (the name of the staging table you are writing to)

PipelineTriggerType = @pipeline().TriggerType

ErrorMessage is not used here

CompanyPrefix used if you have multiple company setup in your data

Note – free space to add additional information

Update AnalyticsAudit on failure

On the failure activity, OnCopyError, the following settings apply for the same stored procedure:

ADFRunGUID = @pipeline().RunId

CopyDuration = 0

PipelineName = @concat('Failed Run - ', pipeline().Pipeline)

PipelineStart = @variables('PipelineStart')

RowsCopied = 0

RowsRead = 0

RowVersion = 0

Table = stg$ExtCustomerCounter (the name of the staging table you are writing to)

PipelineTriggerType = @pipeline().TriggerType

ErrorMessage = @activity('Get CustomerCounterData').Error.Message

CompanyPrefix used if you have multiple company setup in your data

Large data source

For large datasets where daily full load is not an option you will need incremental load. For this you

will need to get the Current timestamp (or the column used in your case to determine the incremental

load) and the last timestamp from the audit table.

Here is an example from the All staging Tables pipeline:

Extending Analytics for LS Central

Chapter 8 - Third-party data 31

The last timestamp is extracted from the table AnalyticsAudit

 (variables('Control_Table_Table_Name'))

A similar method is used to get the maximum timestamp from the source data and then this

information is used in the source query to only load new data to the DW.

Add staging pipeline to scheduled run

Add the staging pipeline to the Scheduled run pipeline to have the data loaded on the selected

schedule with the Analytics schedule:

Extending Analytics for LS Central

Chapter 8 - Third-party data 32

Now when the scheduled run is triggered, the source data will be written to the Analytics database as

a staging table:

Extending Analytics for LS Central

Chapter 8 - Third-party data 33

Add fact table to star schema

Create a connected fact table

First create the destination table with the correct surrogate keys (SK_*) for the connected dimensions.

Name the schema “DW” and the first letter in the table name “f” to distinguish it from staging and

dimension tables.

Here is the create script for this example:

CREATE TABLE [DW].[fCustomerCounter](

 [Company] [int] NULL,

 [SK_Location] [int] NULL,

 [LocationCode] [nvarchar](100) NULL,

 [Date] [date] NULL,

 [Hour24] [nvarchar](2) NULL,

 [DoorCounter] [int] NULL

) ON [PRIMARY]

Create a Stored Procedure

Create a Stored Procedure that meets your requirements for populating data in the fact table. Make

sure to add the surrogate keys (SK_*) for the connected dimensions. The surrogate keys are used in

the Power BI reports to determine the table relationships.

Here is an example of the stored procedure for the customer counter data used in this documentation.

It is a good idea to have a naming convention for any extra items in the Analytics database – in this

example the affix “Ext” is used.

CREATE PROCEDURE [dbo].[ExtfactCustomerCounter]

AS

/* Ensure the stored procedure does not execute unless the source staging table exist */

IF EXISTS (SELECT

 *

 FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_NAME = 'stg$ExtCustomerCounter')

BEGIN

SET NOCOUNT ON;

WITH

/* Get the list of companies used */

tCompanies

AS

(SELECT

 dCOM.[SK_Company] AS [Company]

 ,dCOM.[CompanyPrefix]

 FROM [DW].[dCompany] dCOM

 WHERE dCOM.[SK_Company] <> -1),

/* Get the dimension(s) needed to connect to the fact table */

Extending Analytics for LS Central

Chapter 8 - Third-party data 34

tLocation

AS

(SELECT

 dLOC.[SK_location]

 ,tCOM.[CompanyPrefix]

 ,dLOC.[LocationCode]

 FROM DW.[dLocation] dLOC

 LEFT OUTER JOIN [tCompanies] tCOM

 ON dLOC.[Company] = tCOM.[Company]),

/* Get the data from the staging table and connect to the dimensions used */

tCustomerCounter

AS

(SELECT

 COALESCE(dCOM.[SK_Company], -1) AS [Company]

 ,COALESCE(tLOC.SK_Location, -1) AS [SK_Location]

 ,sECC.[LocationCode]

 ,[Date]

 ,[Hour24]

 ,[DoorCounter]

 FROM [dbo].[stg$ExtCustomerCounter] sECC

 LEFT JOIN [tLocation] tLOC

 ON sECC.[Company] = tLOC.[CompanyPrefix]

 AND sECC.[LocationCode] = tLOC.[LocationCode]

 LEFT JOIN [DW].[dCompany] dCOM

 ON dCOM.[CompanyPrefix] = sECC.[Company])

/* Use merge to update the fact table */

MERGE [DW].[fCustomerCounter] AS Target USING (SELECT

 [Company]

 ,[SK_Location]

 ,[LocationCode]

 ,[Date]

 ,[Hour24]

 ,[DoorCounter]

 FROM tCustomerCounter) AS Source

ON Target.[Company] = Source.[Company]

 AND Target.[LocationCode] = Source.[LocationCode]

 AND Target.[Date] = Source.[Date]

 AND Target.[Hour24] = Source.[Hour24]

WHEN MATCHED

 THEN UPDATE

 SET [SK_Location] = Source.[SK_Location]

 ,[DoorCounter] = Source.[DoorCounter]

WHEN NOT MATCHED BY TARGET

 THEN INSERT ([Company]

 , [SK_Location]

 , [LocationCode]

 , [Date]

 , [Hour24]

 , [DoorCounter])

 VALUES (Source.[Company], Source.[SK_Location],Source.[LocationCode],

Source.[Date], Source.[Hour24], Source.[DoorCounter])

/* OPTIONAL if records should be deleted in the DW is they are removed from the source data

Usually records are not deleted from DW

WHEN NOT MATCHED BY SOURCE

Extending Analytics for LS Central

Chapter 8 - Third-party data 35

THEN DELETE

*/

;

/* SELECT Rowcount is needed for the Azure Data Factory pipeline so the activity has results to determine

successful execution*/

SELECT

 'RowCount' = @@rowcount

;

END

Add a fact table Stored Procedure to ADF pipeline

Create Pipeline to execute SP

Create a new pipeline and place it in the folder “4.e - Extension Fact Tables”. Give the pipeline a

descriptive name, for example “PL-SP-ExtCustomerCounter”, and create a variable named

“PipelineStart”.

Add the following activities: Set variable, Lookup, and 2 instances of Stored procedure. Connect as

shown in the image:

Set the Variable to utcnow() using “Add dynamic content”:

Extending Analytics for LS Central

Chapter 8 - Third-party data 36

Set the Lookup activity to execute the stored procedure “[dbo].[ExtfactCustomerCounter]”:

Extending Analytics for LS Central

Chapter 8 - Third-party data 37

Update Analytics Audit

Set the properties for UpdateAnalyticsAudit and OnError-UpdateAnalyticsAudit to write correct

information in the AnalyticsAudit table.

ADFRunGUID = @pipeline().RunId

CopyDuration = Treat AS null

PipelineName = @pipeline().Pipeline

PipelineStart = @variables('PipelineStart')

RowsCopied = @activity('SP Customer counter').output.firstRow.RowCount

Extending Analytics for LS Central

Chapter 8 - Third-party data 38

RowsRead = Treat AS null

RowVersion is only used when you need to set up Incramental loading - Treat AS null in this scenario

Table = fCustomerCounter (the name of the fact table you are writing to)

PipelineTriggerType = @pipeline().TriggerType

ErrorMessage is not used here

Note – free space to add additional information

Update AnalyticsAudit on failure

On the failure activity the following settings apply for the same stored procedure

ADFRunGUID = @pipeline().RunId

CopyDuration = 0

PipelineName = @concat('Failed Run - ', pipeline().Pipeline)

PipelineStart = @variables('PipelineStart')

RowsCopied = 0

RowsRead = 0

RowVersion = 0

Table = fCustomerCounter (the name of the fact table you are trying to write to)

PipelineTriggerType = @pipeline().TriggerType

ErrorMessage = @activity('SP Customer counter').error.message

Add Facttable pipeline to scheduled run

Add an “Execute pipeline” activity to the Scheduled Run pipeline. Depending on your requirements

set the depend linage – In this demo the customer counter fact table will start populating after all

dimension activities have completed.

Extending Analytics for LS Central

Chapter 8 - Third-party data 39

On your next scheduled run the new table will be available in the Analytics DW and you can add to

new data to your reports.

Add data directly in Power BI

There is also an option to add data tables directly in the data model in Power BI. In this demo the

same data source is added to the model and used in a report page. Same or similar steps apply when

using the data from the fact table created above. The difference is the source type and with the fact

table there is no need to look up the correct surrogate key from the relevant dimensions.

Get a new source

In Power BI desktop, open Home – Transform data – Transform data:

Select New Source and in this case Text/csv:

Select the source data and verify columns before loading to the data model.

Merge to get surrogate keys

Fact tables are linked to dimensions through surrogate keys. Merge queries is a simple method to add

the correct keys from the dimensions.

Extending Analytics for LS Central

Chapter 8 - Third-party data 40

Select the keys that match and click “OK”:

This needs to be done for the Location and Company dimensions (in this example).

Expand merged tables

You only need to add the surrogate key from the linked tables. This is done by expanding the linked

table and selecting the desired columns:

Extending Analytics for LS Central

Chapter 8 - Third-party data 41

Remove unnecessary columns

After the surrogate keys have been added to the new fact table, the business keys in the fact table can

be removed as they will never be used.

M query

The final M query looks like this:

let

 Source = Csv.Document(File.Contents("C:\CustomerCounter\StoreCustomerCounterData.txt"),[Delimiter="

 ", Columns=5, Encoding=1252, QuoteStyle=QuoteStyle.None]),

 #"Promoted Headers" = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),

 #"Changed Type" = Table.TransformColumnTypes(#"Promoted Headers",{{"Company", type text}, {"Date",

type date}, {"LocationCode", type text}, {"Hour24", Int64.Type}, {"DoorCounter", Int64.Type}}),

 #"Merged Queries" = Table.NestedJoin(#"Changed Type", {"Company"}, Company, {"Company Name"},

"Company.1", JoinKind.LeftOuter),

 #"Expanded Company.1" = Table.ExpandTableColumn(#"Merged Queries", "Company.1", {"SK_Company"},

{"Company.1.SK_Company"}),

 #"Merged Queries1" = Table.NestedJoin(#"Expanded Company.1", {"LocationCode"}, Location, {"Location

Code"}, "Location", JoinKind.LeftOuter),

Extending Analytics for LS Central

Chapter 8 - Third-party data 42

 #"Expanded Location" = Table.ExpandTableColumn(#"Merged Queries1", "Location", {"SK_Location"},

{"Location.SK_Location"}),

 #"Removed Columns" = Table.RemoveColumns(#"Expanded Location",{"Company", "LocationCode"}),

 #"Renamed Columns" = Table.RenameColumns(#"Removed Columns",{{"Company.1.SK_Company",

"SK_Company"}, {"Location.SK_Location", "SK_Location"}})

in

 #"Renamed Columns"

Define relationships in PowerBI

The steps from this point apply both for using a custom fact table in the Analytics DW or for using the

steps above to add data directly to the data model in Power BI.

Define the relationships from the new fact table to the related dimensions. In this example, the

connected dimensions are: Date, Time, Company, and Location.

Extending Analytics for LS Central

Chapter 8 - Third-party data 43

Use the new data in a report page

With the new data it is possible to create custom DAX calculations or, depending on the data, use the

data directly in a current or new visual.

Here is an example where the average number of customers entering the locations is compared with

the average net sale per transaction:

